How modeling HIV on an atomic level could lead to a cure

Researchers use a supercomputer to model the 64 million atoms at the heart of the destructive virus

HIV-1 capsids
(Image credit: Theoretical and Computational Biophysics Group, NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute, Un)

Part of what makes the HIV virus so difficult to kill — aside from being thousands of times smaller than an average human cell — is that it's covered in several layers of protective proteins. Techniques are already being developed to attack the virus when it's at its weakest and most vulnerable. But new models — developed by scientists using the University of Illinois' "Blue Waters" supercomputer — are finally giving researchers an atomic-level look at the formidable barrier mechanism enclosing the heart of the virus.

If you peel away the outer layers of the HIV virus, you'll find a conical structure called the capsid, which houses the virus' payload of genetic material. (See the diagram below.) When HIV invades a cell, it's the capsid that opens up to initiate the takeover process, allowing the virus to replicate. Better understanding how this mysterious delivery system operates could be one of the final steps to finding a cure.

Subscribe to The Week

Escape your echo chamber. Get the facts behind the news, plus analysis from multiple perspectives.

SUBSCRIBE & SAVE
https://cdn.mos.cms.futurecdn.net/flexiimages/jacafc5zvs1692883516.jpg

Sign up for The Week's Free Newsletters

From our morning news briefing to a weekly Good News Newsletter, get the best of The Week delivered directly to your inbox.

From our morning news briefing to a weekly Good News Newsletter, get the best of The Week delivered directly to your inbox.

Sign up
Chris Gayomali is the science and technology editor for TheWeek.com. Previously, he was a tech reporter at TIME. His work has also appeared in Men's Journal, Esquire, and The Atlantic, among other places. Follow him on Twitter and Facebook.